The constrained modified KP hierarchy and the generalized Miura transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L725
(http://iopscience.iop.org/0305-4470/30/21/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:03

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The constrained modified KP hierarchy and the generalized Miura transformations

Jiin-Chang Shaw $\dagger \S$ and Ming-Hsien Tu \ddagger
\dagger Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
\ddagger Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Received 28 July 1997

Abstract

In this letter, we consider the second Hamiltonian structure of the constrained modified KP hierarchy. After mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We simplify this Hamiltonian structure by factorizing the Lax operator into linear terms.

Classical W-algebras have played an important role in integrable systems [1]. It's Adler map (see, for example, [2]) from which the W-algebras can be constructed as Poisson bracket algebras. A typical example is the W_{n} algebra constructed from the second Gelfand-Dickey (GD) structure of the nth Korteweg-de Vries (KdV) hierarchy [3, 4]. Amazingly, under factorization of the KdV-Lax operator, the second Hamiltonian structure is transformed into a much simpler one in an appropriate space of the modified variables. Thus the factorization not only provides a Miura transformation which maps the nth KdV hierarchy to the corresponding modified hierarchies but also gives a free-field realization of the W_{n} algebra. This is what we called the Kupershmidt-Wilson (KW) theorem [5, 6]. In general, the above scheme is encoded in the particular form of the Lax operator and its associated Poisson structure. Several integrable systems have been studied based on this scheme, such as the Kadomtsev-Petviashvili (KP) hierarchy and its reductions [7-13].

In this letter, we will consider a kind of reduction of the KP hierarchy called the constrained modified KP (cmKP) hierarchy [14]. Many properties of the cmKP have been studied, such as bi-Hamiltonian structure [14], Bäcklund transformation [15], modification [16], and the conformal property [17], etc. However, a clear and conclusive statement about the associated Poisson structure is still lacking. In the following, we will concentrate on this problem. Especially, we will show that there is an interesting property of the second Poisson structure of the cmKP hierarchy under factorization of the Lax operator into linear terms.

The cmKP hierarchy [14] has the Lax operator of the form

$$
\begin{equation*}
K_{n}=\partial^{n}+v_{1} \partial^{n-1}+\cdots+v_{n}+\partial^{-1} v_{n+1} \tag{1}
\end{equation*}
$$

[^0]|| E-mail address: mhtu@phys.nthu.edu.tw
which satisfies the hierarchy equations
\[

$$
\begin{equation*}
\partial_{k} K_{n}=\left[\left(K_{n}^{k / n}\right)_{\geqslant 1}, K_{n}\right] . \tag{2}
\end{equation*}
$$

\]

The second Poisson bracket associated with the Lax operator was obtained by Oevel and Strampp [14] as follows

$$
\begin{equation*}
\{F, G\}=\int \operatorname{res}\left(\frac{\delta F}{\delta K_{n}} \Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)\right) \tag{3}
\end{equation*}
$$

where F and G are functionals of K_{n} and

$$
\begin{align*}
\Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)= & \left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{+} K_{n}-K_{n}\left(\frac{\delta G}{\delta K_{n}} K_{n}\right)_{+}+\left[K_{n},\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{0}\right] \\
& +\partial^{-1} \operatorname{res}\left[K_{n}, \frac{\delta G}{\delta K_{n}}\right] K_{n}+\left[K_{n}, \int^{x}\left(\operatorname{res}\left[K_{n}, \frac{\delta G}{\delta K_{n}}\right]\right)\right] \tag{4}
\end{align*}
$$

with

$$
\begin{equation*}
\frac{\delta G}{\delta K_{n}} \equiv \frac{\delta G}{\delta v_{n+1}}+\partial^{-1} \frac{\delta G}{\delta v_{n}}+\cdots+\partial^{-n} \frac{\delta G}{\delta v_{1}} \tag{5}
\end{equation*}
$$

Recently, Liu [16] conjectured that if the Lax operator K_{n} is factorized as

$$
\begin{equation*}
K_{n}=\partial^{-1}\left(\partial-w_{1}\right) \cdots\left(\partial-w_{n+1}\right) \tag{6}
\end{equation*}
$$

then in terms of $\left\{w_{i}\right\}$ the Poisson structure (3) can be simplified to

$$
\begin{equation*}
\left\{w_{i}(x), w_{j}(y)\right\}=\left(1-\delta_{i j}\right) \delta^{\prime}(x-y) \tag{7}
\end{equation*}
$$

where $\delta^{\prime}(x-y) \equiv \partial_{x} \delta(x-y)$. The cases for $n=1$ and 2 have been explicitly demonstrated in [16]. However, to the best of our knowledge, a general proof for all n is still lacking. It is the main purpose of this letter to give an elegant and simple proof for the general case.

To simplify the Hamiltonian structure (4) let us consider the operator

$$
\begin{align*}
L_{n+1} & \equiv \partial K_{n}=\partial^{n+1}+v_{1} \partial^{n}+\left(v_{2}+v_{1}^{\prime}\right) \partial^{n-1}+\cdots+\left(v_{n+1}+v_{n}^{\prime}\right) \\
& \equiv \partial^{n+1}+u_{1} \partial^{n}+u_{2} \partial^{n-1}+\cdots+u_{n+1} \tag{8}
\end{align*}
$$

which is a pure differential operator and the variables $\left\{v_{i}\right\}$ and $\left\{u_{i}\right\}$ are related by

$$
\begin{align*}
& v_{1}=u_{1} \\
& v_{2}=u_{2}-u_{1}^{\prime} \\
& \vdots \tag{9}\\
& v_{n+1}=u_{n+1}-u_{n}^{\prime}+\cdots(-1)^{n} u_{1}^{(n)}
\end{align*}
$$

Proposition 1. With respect to the pure differential operator L_{n+1}, the second Poisson bracket (3) now becomes

$$
\begin{equation*}
\{F, G\}=\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}} \Omega\left(\frac{\delta G}{\delta L_{n+1}}\right)\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega\left(\frac{\delta G}{\delta L_{n+1}}\right)= & \left(L_{n+1} \frac{\delta G}{\delta L_{n+1}}\right)_{+} L_{n+1}-L_{n+1}\left(\frac{\delta G}{\delta L_{n+1}} L_{n+1}\right)_{+} \\
& +\left[L_{n+1}, \int^{x}\left(\operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]\right)\right] . \tag{11}
\end{align*}
$$

with

$$
\begin{equation*}
\frac{\delta G}{\delta L_{n+1}} \equiv \partial^{-1} \frac{\delta G}{\delta u_{n+1}}+\partial^{-2} \frac{\delta G}{\delta u_{n}}+\cdots+\partial^{-n-1} \frac{\delta G}{\delta u_{1}} . \tag{12}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\delta F=\int \operatorname{res}\left(\frac{\delta F}{\delta K_{n}} \delta K_{n}\right)=\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}} \delta L_{n+1}\right) \tag{13}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\delta F}{\delta K_{n}}=\frac{\delta F}{\delta L_{n+1}} \partial+\mathrm{O}\left(\partial^{-n-1}\right) \tag{14}
\end{equation*}
$$

where $\mathrm{O}\left(\partial^{-n-1}\right)$ denotes terms of order $-n-1$. Then (10) becomes

$$
\begin{equation*}
\{F, G\}=\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}} \partial \Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)\right) \tag{15}
\end{equation*}
$$

here we drop the terms $O\left(\partial^{-n-1}\right)$ because the order of $\Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)$ is $n-1$. Next we want to express $\partial \Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)$ in terms of L_{n+1} and $\frac{\delta G}{\delta L_{n+1}}$. By using (8) and (14), we have

$$
\begin{align*}
& \left(L_{n+1} \frac{\delta G}{\delta L_{n+1}}\right)_{+}=\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{+}+\left[\partial,\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{\geqslant 1}\right] \partial^{-1} \\
& \left(L_{n+1} \frac{\delta G}{\delta L_{n+1}}\right)_{+} L_{n+1}=\partial\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{+} K_{n}-\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{0}^{\prime} K_{n} \tag{16}\\
& \operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]=\operatorname{res}\left[K_{n}, \frac{\delta G}{\delta K_{n}}\right]+\left(K_{n} \frac{\delta G}{\delta K_{n}}\right)_{0}^{\prime}
\end{align*}
$$

which imply that

$$
\begin{align*}
\partial \Theta_{2}\left(\frac{\delta G}{\delta K_{n}}\right)= & \left(L_{n+1} \frac{\delta G}{\delta L_{n+1}}\right)_{+} L_{n+1}-L_{n+1}\left(\frac{\delta G}{\delta L_{n+1}} L_{n+1}\right)_{+} \\
& +\left[L_{n+1}, \int^{x}\left(\operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]\right)\right] \\
& \equiv \Omega\left(\frac{\delta G}{\delta L_{n+1}}\right) . \tag{17}
\end{align*}
$$

Besides the standard second GD structure, the last piece of (11) is called the third GD bracket which is compatible with the second one [3]. Hence, under the mapping (8), the Hamiltonian structure (4) has been mapped to the sum of the second and the third GD structure defined by the differential operator L_{n+1}.

Now we want to show that this Hamiltonian structure can be simplified via the following factorization

$$
\begin{equation*}
L_{n+1}=\left(\partial-w_{1}\right)\left(\partial-w_{2}\right) \ldots\left(\partial-w_{n+1}\right) . \tag{18}
\end{equation*}
$$

This yields an expression for each u_{i} (and hence v_{i}) as a differential polynomial in $\left\{w_{i}\right\}$ (the inverse statement is not true). For example

$$
\begin{aligned}
& u_{1}=-\left(w_{1}+\cdots+w_{n+1}\right) \\
& u_{2}=\sum_{i<j} w_{i} w_{j}-\sum_{i=0}^{n-1}(n-i) w_{n+1-i}^{\prime} \\
& \vdots
\end{aligned}
$$

etc. Expression (19) is called the Miura transformation.

Proposition 2. Under the factorization (18), the Poisson structure (10) becomes

$$
\begin{equation*}
\{F, G\}=\sum_{i \neq j} \int\left(\frac{\delta F}{\delta w_{i}}\right)\left(\frac{\delta G}{\delta w_{j}}\right)^{\prime} \tag{20}
\end{equation*}
$$

i.e. the basic building blocks $\left\{w_{i}\right\}$ satisfy (7).

Proof. First, thanks to the KW theorem [5, 6] for the second GD structure, the first two terms of the Poisson bracket (10) can be simplified as follows

$$
\begin{equation*}
\{F, G\}_{2}^{\mathrm{GD}}=-\sum_{i=1}^{n+1} \int\left(\frac{\delta F}{\delta w_{i}}\right)\left(\frac{\delta G}{\delta w_{i}}\right)^{\prime} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\{w_{i}(x), w_{j}(y)\right\}_{2}^{\mathrm{GD}}=-\delta_{i j} \delta^{\prime}(x-y) \tag{22}
\end{equation*}
$$

Thus the remaining tasks are to verify
$\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}}\left[L_{n+1}, \int^{x} \operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]\right]\right)=\sum_{i, j=1}^{n+1} \int\left(\frac{\delta F}{\delta w_{i}}\right)\left(\frac{\delta G}{\delta w_{j}}\right)^{\prime}$.
Let $l_{i} \equiv\left(\partial-w_{i}\right)$, then $L_{n+1}=l_{1} l_{2} \cdots l_{n+1}$ and

$$
\begin{gather*}
\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}} \delta L_{n+1}\right)=-\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}} \sum_{i=1}^{n+1} l_{1} \ldots l_{i-1} \delta w_{i} l_{i+1} \ldots l_{n+1}\right) \\
=-\sum_{i=1}^{n+1} \int \operatorname{res}\left(l_{i+1} \ldots l_{n+1} \frac{\delta F}{\delta L_{n+1}} l_{1} \ldots l_{i-1}\right) \delta w_{i} \\
=\sum_{i=1}^{n+1} \int \frac{\delta F}{\delta w_{i}} \delta w_{i} \tag{24}
\end{gather*}
$$

which implies

$$
\begin{equation*}
\frac{\delta F}{\delta w_{i}}=-\operatorname{res}\left(l_{i+1} \ldots l_{n+1} \frac{\delta F}{\delta L_{n+1}} l_{1} \ldots l_{i-1}\right) \tag{25}
\end{equation*}
$$

Now

$$
\begin{align*}
\left(\sum_{i=1}^{n+1} \frac{\delta F}{\delta w_{i}}\right)^{\prime} & =-\left[\partial, \operatorname{res}\left(\sum_{i=1}^{n+1} l_{i+1} \ldots l_{n+1} \frac{\delta F}{\delta L_{n+1}} l_{1} \ldots l_{i-1}\right)\right] \\
& =-\sum_{i=1}^{n+1} \operatorname{res}\left(\left[\partial, l_{i+1} \ldots l_{n+1} \frac{\delta F}{\delta L_{n+1}} l_{1} \ldots l_{i-1}\right]\right) \\
& =-\sum_{i=1}^{n+1} \operatorname{res}\left(\left[l_{i}, l_{i+1} \ldots l_{n+1} \frac{\delta F}{\delta L_{n+1}} l_{1} \ldots l_{i-1}\right]\right) \\
& =-\operatorname{res}\left[L_{n+1}, \frac{\delta F}{\delta L_{n+1}}\right] . \tag{26}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{\delta F}{\delta w_{i}}=-\int^{x} \operatorname{res}\left[L_{n+1}, \frac{\delta F}{\delta L_{n+1}}\right] \tag{27}
\end{equation*}
$$

Note that we have substituted l_{i} for ∂ in the third line because nothing will change.

Therefore,

$$
\begin{align*}
\sum_{i, j=1}^{n+1} \int\left(\frac{\delta F}{\delta w_{i}}\right. &)\left(\frac{\delta G}{\delta w_{j}}\right)^{\prime}=-\int\left(\sum_{i=1}^{n+1} \frac{\delta F}{\delta w_{i}}\right)^{\prime}\left(\sum_{j=1}^{n+1} \frac{\delta G}{\delta w_{j}}\right) \\
= & -\int \operatorname{res}\left(\left[L_{n+1}, \frac{\delta F}{\delta L_{n+1}}\right] \int^{x} \operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]\right) \\
& =\int \operatorname{res}\left(\frac{\delta F}{\delta L_{n+1}}\left[L_{n+1}, \int^{x} \operatorname{res}\left[L_{n+1}, \frac{\delta G}{\delta L_{n+1}}\right]\right]\right) \tag{28}
\end{align*}
$$

Proposition 3. If the Hamiltonian H_{k} of the cmKP hierarchy equations $\partial_{k} K_{n}=$ $\left[\left(K_{n}^{k / n}\right)_{\geqslant 1}, K_{n}\right]=\Theta_{2}\left(\frac{\delta H_{k}}{\delta K_{n}}\right)$ with respect to the second structure is expressed in terms of $\left\{w_{i}\right\}$ by the Miura transformation, then the corresponding modified equations will be

$$
\begin{equation*}
\partial_{k} w_{i}=\sum_{j \neq i}\left(\frac{\delta H_{k}}{\delta w_{j}}\right)^{\prime} \tag{29}
\end{equation*}
$$

Proof. This is just a corollary of proposition 2.
Finally, we would like to provide another interesting property of the Poisson structure (10) although it is less relevant to this case. In fact, in [18] it was shown that the Poisson structure (10) can be associated to the Lax operator of the form

$$
\begin{equation*}
L=\partial^{N}+u_{1} \partial^{N-1}+\ldots+u_{N}+\sum_{i=1}^{M} \phi_{i} \partial^{-1} \psi_{i} \tag{30}
\end{equation*}
$$

Therefore we can discuss the Poisson structure (10) under the factorization of the Lax operator containing inverse linear terms.
Proposition 4. Let L be a pseudo-differential operator of the form (30). Then under the following factorization (generalized Miura transformation)

$$
\begin{equation*}
L=\left(\partial-a_{1}\right) \ldots\left(\partial-a_{n}\right)\left(\partial-b_{1}\right)^{-1} \ldots\left(\partial-b_{m}\right)^{-1} \quad(n=N+M, m=M) \tag{31}
\end{equation*}
$$

the Poisson structure (10) associated with L becomes

$$
\begin{align*}
& \left\{a_{i}(x), a_{j}(y)\right\}=\left(1-\delta_{i j}\right) \delta^{\prime}(x-y) \\
& \left\{b_{i}(x), b_{j}(y)\right\}=\left(1+\delta_{i j}\right) \delta^{\prime}(x-y) \tag{32}\\
& \left\{a_{i}(x), b_{j}(y)\right\}=\delta^{\prime}(x-y)
\end{align*}
$$

Proof. It has been shown [10-13] that the second GD bracket with respects to the factorization (31) are given by

$$
\begin{align*}
& \left\{a_{i}(x), a_{j}(y)\right\}_{2}^{\mathrm{GD}}=-\delta_{i j} \delta^{\prime}(x-y) \\
& \left\{b_{i}(x), b_{j}(y)\right\}_{2}^{\mathrm{GD}}=\delta_{i j} \delta^{\prime}(x-y) \tag{33}\\
& \left\{a_{i}(x), b_{j}(y)\right\}_{2}^{\mathrm{GD}}=0 .
\end{align*}
$$

Hence, we only need to treat the third structure and to show that

$$
\begin{equation*}
\int \operatorname{res}\left(\frac{\delta F}{\delta L}\left[L, \int^{x} \operatorname{res}\left[L, \frac{\delta G}{\delta L}\right]\right]\right)=\int\left(\sum_{i=1}^{n} \frac{\delta F}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta F}{\delta b_{j}}\right)\left(\sum_{i=1}^{n} \frac{\delta G}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta G}{\delta b_{j}}\right)^{\prime} . \tag{34}
\end{equation*}
$$

Let $A_{i}=\left(\partial-a_{i}\right)$ and $B_{j}=\left(\partial-b_{j}\right)$ then

$$
\begin{align*}
\delta F=\int \operatorname{res}(& \left.\frac{\delta F}{\delta L} \delta L\right)=\int \operatorname{res}\left(\frac{\delta F}{\delta L} \sum_{i=1}^{n} A_{1} \ldots A_{i-1} \delta A_{i} \ldots A_{n} B_{1}^{-1} \ldots B_{m}^{-1}\right) \\
& +\int \operatorname{res}\left(\frac{\delta F}{\delta L} A_{1} \ldots A_{n} \sum_{j=1}^{m} B_{1}^{-1} \ldots B_{j-1}^{-1} \delta B_{j}^{-1} \ldots B_{m}^{-1}\right) \tag{35}\\
\equiv & \int\left(\sum_{i=1}^{n} \frac{\delta F}{\delta a_{i}} \delta a_{i}+\sum_{j=1}^{m} \frac{\delta F}{\delta b_{j}} \delta b_{j}\right) . \tag{36}
\end{align*}
$$

Substituting $\delta A_{i}=-\delta a_{i}$ and $\delta B_{j}^{-1}=B_{j}^{-1} \delta b_{j} B_{j}^{-1}$ into (35) and comparing with (36), we obtain

$$
\begin{align*}
& \frac{\delta F}{\delta a_{i}}=-\operatorname{res}\left(A_{i+1} \ldots A_{n} B_{1}^{-1} \ldots B_{m}^{-1} \frac{\delta F}{\delta L} A_{1} \ldots A_{i-1}\right) \tag{37}\\
& \frac{\delta F}{\delta b_{j}}=\operatorname{res}\left(B_{j}^{-1} \ldots B_{m}^{-1} \frac{\delta F}{\delta L} A_{1} \ldots A_{n} B_{1}^{-1} \ldots B_{j}^{-1}\right) . \tag{38}
\end{align*}
$$

Thus

$$
\begin{align*}
\sum_{i=1}^{n}\left(\frac{\delta F}{\delta a_{i}}\right)^{\prime}+ & \sum_{j=1}^{m}\left(\frac{\delta F}{\delta b_{j}}\right)^{\prime}=\sum_{i=1}^{n}\left[\partial, \frac{\delta F}{\delta a_{i}}\right]+\sum_{j=1}^{m}\left[\partial, \frac{\delta F}{\delta b_{j}}\right] \\
= & -\sum_{i=1}^{n} \operatorname{res}\left[A_{i}, A_{i+1} \ldots A_{n} B_{1}^{-1} \ldots B_{m}^{-1} \frac{\delta F}{\delta L} A_{1} \ldots A_{i-1}\right] \\
& +\sum_{j=1}^{m} \operatorname{res}\left[B_{j}, B_{j}^{-1} \ldots B_{m}^{-1} \frac{\delta F}{\delta L} A_{1} \ldots A_{n} B_{1}^{-1} \ldots B_{j}^{-1}\right] \\
= & -\operatorname{res}\left[L, \frac{\delta F}{\delta L}\right] \tag{39}
\end{align*}
$$

which implies

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\delta F}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta F}{\delta b_{j}}=-\int^{x} \operatorname{res}\left[L, \frac{\delta F}{\delta L}\right] . \tag{40}
\end{equation*}
$$

Now

$$
\begin{align*}
\int\left(\sum_{i=1}^{n} \frac{\delta F}{\delta a_{i}}\right. & \left.+\sum_{j=1}^{m} \frac{\delta F}{\delta b_{j}}\right)\left(\sum_{i=1}^{n} \frac{\delta G}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta G}{\delta b_{j}}\right)^{\prime} \\
& =-\int\left(\sum_{i=1}^{n} \frac{\delta F}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta F}{\delta b_{j}}\right)^{\prime}\left(\sum_{i=1}^{n} \frac{\delta G}{\delta a_{i}}+\sum_{j=1}^{m} \frac{\delta G}{\delta b_{j}}\right) \\
& =-\int \operatorname{res}\left(\left[L, \frac{\delta F}{\delta L}\right] \int^{x} \operatorname{res}\left[L, \frac{\delta G}{\delta L}\right]\right) \\
& =\int \operatorname{res}\left(\frac{\delta F}{\delta L}\left[L, \int^{x} \operatorname{res}\left[L, \frac{\delta G}{\delta L}\right]\right]\right) . \tag{41}
\end{align*}
$$

In summary, we have shown that the second Hamiltonian structure of the cmKP hierarchy has a very simple realization. In terms of the variables $\left\{w_{i}\right\}$, the Lax operator K_{n} can be
factorized as (6) and the Poisson structure (3) is mapped into a much simpler form (7). We also discuss the Poisson structure (10) under factorization of the Lax operator containing inverse linear terms. The resulting brackets (32) turns out to be simple as well. We hope that we can explore the usage of these brackets in the future.

Note added in proof. After submission of this manuscript for publication we became aware of the preprint by Liu [19] which partly overlaps our work.

We would like to thank Professor W-J Huang for inspiring discussions and Dr M-C Chang for reading the manuscript. This work was supported by the National Science Council of the People's Republic of China under grant no NSC-86-2112-M-007-020.

References

[1] Bouwknegt P and Schoutens K (ed) 1995 W-symmetry (Singapore: World Scientific)
[2] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)
[3] Di Francesco P, Itzykson C and Zuber J B 1991 Commun. Math. Phys. 140543
[4] Dickey L A 1993 Lecture on classical W-algebras, unpublished
[5] Kupershmidt B A and Wilson G 1981 Inv. Math. 62403
[6] Dickey L A 1983 Commun. Math. Phys. 87127
[7] Cheng Y 1995 Commun. Math. Phys. 171661
[8] Bonora L and Xiong C S 1994 J. Math. Phys. 355781
[9] Bonora L, Liu Q P and Xiong C S 1996 Commun. Math. Phys. 175177
[10] Dickey L A 1995 Lett. Math. Phys. 35229
[11] Yu F 1993 Lett. Math. Phys. 29175
[12] Aratyn H, Nissimov E and Pacheva S 1993 Phys. Lett. B 31441
[13] Mas J and Ramos E 1995 Phys. Lett. B 351194
[14] Oevel W and Strampp W 1993 Commun. Math. Phys. 15751
[15] Shaw J C and Tu M H 1997 Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies J. Math. Phys. in press
[16] Liu Q P 1995 Inverse Problems 11205
[17] Huang W J, Shaw J C and Yen H C 1995 J. Math. Phys. 362959
[18] Shaw J C and Tu M H 1997 Nonlocal extended conformal algebras associated with multi-constraint KP hierarchy and their free-field realizations Preprint solv-int/9708008
[19] Liu Q P 1997 The constrained MKP hierarchy and the generalized Kupershmidt-Wilson theorem Preprint solv-int/9707012

[^0]: § E-mail address: shaw@math.nctu.edu.tw

